一、前言
本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。
二、Logistic回归与梯度上升算法
Logistic回归是众多分类算法中的一员。通常,Logistic回归用于二分类问题,例如预测明天是否会下雨。当然它也可以用于多分类问题,不过为了简单起见,本文暂先讨论二分类问题。首先,让我们来了解一下,什么是Logistic回归。
1、Logistic回归
假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归,如下图所示:
Logistic回归是分类方法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。
所以要想了解Logistic回归,我们必须先看一看Sigmoid函数 ,我们也可以称它为Logistic函数。它的公式如下:
整合成一个公式,就变成了如下公式:
下面这张图片,为我们展示了Sigmoid函数的样子。
z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到[0,1]的映射,这样我们的数据集([x0,x1,...,xn]),不管是大于1或者小于0,都可以映射到[0,1]区间进行分类。hθ(x)给出了输出为1的概率。比如当hθ(x)=0.7,那么说明有70%的概率输出为1。输出为0的概率是输出为1的补集,也就是30%。
如果我们有合适的参数列向量θ([θ0,θ1,...θn]^T),以及样本列向量x([x0,x1,...,xn]),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就可以说样本是正样本,否则样本是负样本。
举个例子,对于"垃圾邮件判别问题",对于给定的邮件(样本),我们定义非垃圾邮件为正类,垃圾邮件为负类。我们通过计算出的概率值即可判定邮件是否是垃圾邮件。
那么问题来了!如何得到合适的参数向量θ?
根据sigmoid函数的特性,我们可以做出如下的假设:
式即为在已知样本x和参数θ的情况下,样本x属性正样本(y=1)和负样本(y=0)的条件概率。理想状态下,根据上述公式,求出各个点的概率均为1,也就是完全分类都正确。但是考虑到实际情况,样本点的概率越接近于1,其分类效果越好。比如一个样本属于正样本的概率为0.51,那么我们就可以说明这个样本属于正样本。另一个样本属于正样本的概率为0.99,那么我们也可以说明这个样本属于正样本。但是显然,第二个样本概率更高,更具说服力。我们可以把上述两个概率公式合二为一:
合并出来的Loss,我们称之为损失函数(Loss Function)。当y等于1时,(1-y)项(第二项)为0;当y等于0时,y项(第一项)为0。为s了简化问题,我们对整个表达式求对数,(将指数问题对数化是处理数学问题常见的方法):
这个损失函数,是对于一个样本而言的。给定一个样本,我们就可以通过这个损失函数求出,样本所属类别的概率,而这个概率越大越好,所以也就是求解这个损失函数的最大值。既然概率出来了,那么最大似然估计也该出场了。假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积,便可得到如下公式:
其中,m为样本的总数,y(i)表示第i个样本的类别,x(i)表示第i个样本,需要注意的是θ是多维向量,x(i)也是多维向量。
综上所述,满足J(θ)的最大的θ值即是我们需要求解的模型。
怎么求解使J(θ)最大的θ值呢?因为是求最大值,所以我们需要使用梯度上升算法。如果面对的问题是求解使J(θ)最小的θ值,那么我们就需要使用梯度下降算法。面对我们这个问题,如果使J(θ) := -J(θ),那么问题就从求极大值转换成求极小值了,使用的算法就从梯度上升算法变成了梯度下降算法,它们的思想都是相同的,学会其一,就也会了另一个。本文使用梯度上升算法进行求解。
2、梯度上升算法
说了半天,梯度上升算法又是啥?J(θ)太复杂,我们先看个简单的求极大值的例子。一个看了就会想到高中生活的函数:
来吧,做高中题。这个函数的极值怎么求?显然这个函数开口向下,存在极大值,它的函数图像为:
求极值,先求函数的导数:
令导数为0,可求出x=2即取得函数f(x)的极大值。极大值等于f(2)=4
但是真实环境中的函数不会像上面这么简单,就算求出了函数的导数,也很难精确计算出函数的极值。此时我们就可以用迭代的方法来做。就像爬坡一样,一点一点逼近极值。这种寻找最佳拟合参数的方法,就是最优化算法。爬坡这个动作用数学公式表达即为:
其中,α为步长,也就是学习速率,控制更新的幅度。效果如下图所示:
比如从(0,0)开始,迭代路径就是1->2->3->4->...->n,直到求出的x为函数极大值的近似值,停止迭代。我们可以编写Python3代码,来实现这一过程:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # -*- coding:UTF-8 -*- """ 函数说明:梯度上升算法测试函数 求函数f(x) = -x^2 + 4x的极大值 Parameters: 无 Returns: 无 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def Gradient_Ascent_test(): def f_prime(x_old): #f(x)的导数 return -2 * x_old + 4 x_old = -1 #初始值,给一个小于x_new的值 x_new = 0 #梯度上升算法初始值,即从(0,0)开始 alpha = 0.01 #步长,也就是学习速率,控制更新的幅度 presision = 0.00000001 #精度,也就是更新阈值 while abs(x_new - x_old) > presision: x_old = x_new x_new = x_old + alpha * f_prime(x_old) #上面提到的公式 print(x_new) #打印最终求解的极值近似值 if __name__ == '__main__': Gradient_Ascent_test() |
代码运行结果如下:
结果很显然,已经非常接近我们的真实极值2了。这一过程,就是梯度上升算法。那么同理,J(θ)这个函数的极值,也可以这么求解。公式可以这么写:
由上小节可知J(θ)为:
sigmoid函数为:
那么,现在我只要求出J(θ)的偏导,就可以利用梯度上升算法,求解J(θ)的极大值了。
那么现在开始求解J(θ)对θ的偏导,求解如下:
其中:
再由:
可得:
接下来,就剩下第三部分:
综上所述:
因此,梯度上升迭代公式为:
知道了,梯度上升迭代公式,我们就可以自己编写代码,计算最佳拟合参数了。
三、Python3实战
1、数据准备
数据集已经为大家准备好,下载地址:数据集下载
这就是一个简单的数据集,没什么实际意义。让我们先从这个简单的数据集开始学习。先看下数据集有哪些数据:
这个数据有两维特征,因此可以将数据在一个二维平面上展示出来。我们可以将第一列数据(X1)看作x轴上的值,第二列数据(X2)看作y轴上的值。而最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。
那么,先让我们编写代码,看下数据集的分布情况:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # -*- coding:UTF-8 -*- import matplotlib.pyplot as plt import numpy as np """ 函数说明:加载数据 Parameters: 无 Returns: dataMat - 数据列表 labelMat - 标签列表 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def loadDataSet(): dataMat = [] #创建数据列表 labelMat = [] #创建标签列表 fr = open('testSet.txt') #打开文件 for line in fr.readlines(): #逐行读取 lineArr = line.strip().split() #去回车,放入列表 dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据 labelMat.append(int(lineArr[2])) #添加标签 fr.close() #关闭文件 return dataMat, labelMat #返回 """ 函数说明:绘制数据集 Parameters: 无 Returns: 无 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def plotDataSet(): dataMat, labelMat = loadDataSet() #加载数据集 dataArr = np.array(dataMat) #转换成numpy的array数组 n = np.shape(dataMat)[0] #数据个数 xcord1 = []; ycord1 = [] #正样本 xcord2 = []; ycord2 = [] #负样本 for i in range(n): #根据数据集标签进行分类 if int(labelMat[i]) == 1: xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) #1为正样本 else: xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) #0为负样本 fig = plt.figure() ax = fig.add_subplot(111) #添加subplot ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本 ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5) #绘制负样本 plt.title('DataSet') #绘制title plt.xlabel('x'); plt.ylabel('y') #绘制label plt.show() #显示 if __name__ == '__main__': plotDataSet() |
运行结果如下:
从上图可以看出数据的分布情况。假设Sigmoid函数的输入记为z,那么z=w0x0 + w1x1 + w2x2,即可将数据分割开。其中,x0为全是1的向量,x1为数据集的第一列数据,x2为数据集的第二列数据。另z=0,则0=w0 + w1x1 + w2x2。横坐标为x1,纵坐标为x2。这个方程未知的参数为w0,w1,w2,也就是我们需要求的回归系数(最优参数)。
2、训练算法
在编写代码之前,让我们回顾下梯度上升迭代公式:
将上述公式矢量化:
根据矢量化的公式,编写代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | # -*- coding:UTF-8 -*- import numpy as np """ 函数说明:加载数据 Parameters: 无 Returns: dataMat - 数据列表 labelMat - 标签列表 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def loadDataSet(): dataMat = [] #创建数据列表 labelMat = [] #创建标签列表 fr = open('testSet.txt') #打开文件 for line in fr.readlines(): #逐行读取 lineArr = line.strip().split() #去回车,放入列表 dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据 labelMat.append(int(lineArr[2])) #添加标签 fr.close() #关闭文件 return dataMat, labelMat #返回 """ 函数说明:sigmoid函数 Parameters: inX - 数据 Returns: sigmoid函数 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def sigmoid(inX): return 1.0 / (1 + np.exp(-inX)) """ 函数说明:梯度上升算法 Parameters: dataMatIn - 数据集 classLabels - 数据标签 Returns: weights.getA() - 求得的权重数组(最优参数) Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def gradAscent(dataMatIn, classLabels): dataMatrix = np.mat(dataMatIn) #转换成numpy的mat labelMat = np.mat(classLabels).transpose() #转换成numpy的mat,并进行转置 m, n = np.shape(dataMatrix) #返回dataMatrix的大小。m为行数,n为列数。 alpha = 0.001 #移动步长,也就是学习速率,控制更新的幅度。 maxCycles = 500 #最大迭代次数 weights = np.ones((n,1)) for k in range(maxCycles): h = sigmoid(dataMatrix * weights) #梯度上升矢量化公式 error = labelMat - h weights = weights + alpha * dataMatrix.transpose() * error return weights.getA() #将矩阵转换为数组,返回权重数组 if __name__ == '__main__': dataMat, labelMat = loadDataSet() print(gradAscent(dataMat, labelMat)) |
运行结果如图所示:
可以看出,我们已经求解出回归系数[w0,w1,w2]。
通过求解出的参数,我们就可以确定不同类别数据之间的分隔线,画出决策边界。
3、绘制决策边界
我们已经解出了一组回归系数,它确定了不同类别数据之间的分隔线。现在开始绘制这个分隔线,编写代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | # -*- coding:UTF-8 -*- import matplotlib.pyplot as plt import numpy as np """ 函数说明:加载数据 Parameters: 无 Returns: dataMat - 数据列表 labelMat - 标签列表 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def loadDataSet(): dataMat = [] #创建数据列表 labelMat = [] #创建标签列表 fr = open('testSet.txt') #打开文件 for line in fr.readlines(): #逐行读取 lineArr = line.strip().split() #去回车,放入列表 dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据 labelMat.append(int(lineArr[2])) #添加标签 fr.close() #关闭文件 return dataMat, labelMat #返回 """ 函数说明:sigmoid函数 Parameters: inX - 数据 Returns: sigmoid函数 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def sigmoid(inX): return 1.0 / (1 + np.exp(-inX)) """ 函数说明:梯度上升算法 Parameters: dataMatIn - 数据集 classLabels - 数据标签 Returns: weights.getA() - 求得的权重数组(最优参数) Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-28 """ def gradAscent(dataMatIn, classLabels): dataMatrix = np.mat(dataMatIn) #转换成numpy的mat labelMat = np.mat(classLabels).transpose() #转换成numpy的mat,并进行转置 m, n = np.shape(dataMatrix) #返回dataMatrix的大小。m为行数,n为列数。 alpha = 0.001 #移动步长,也就是学习速率,控制更新的幅度。 maxCycles = 500 #最大迭代次数 weights = np.ones((n,1)) for k in range(maxCycles): h = sigmoid(dataMatrix * weights) #梯度上升矢量化公式 error = labelMat - h weights = weights + alpha * dataMatrix.transpose() * error return weights.getA() #将矩阵转换为数组,返回权重数组 """ 函数说明:绘制数据集 Parameters: weights - 权重参数数组 Returns: 无 Author: Jack Cui Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-08-30 """ def plotBestFit(weights): dataMat, labelMat = loadDataSet() #加载数据集 dataArr = np.array(dataMat) #转换成numpy的array数组 n = np.shape(dataMat)[0] #数据个数 xcord1 = []; ycord1 = [] #正样本 xcord2 = []; ycord2 = [] #负样本 for i in range(n): #根据数据集标签进行分类 if int(labelMat[i]) == 1: xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) #1为正样本 else: xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) #0为负样本 fig = plt.figure() ax = fig.add_subplot(111) #添加subplot ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本 ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5) #绘制负样本 x = np.arange(-3.0, 3.0, 0.1) y = (-weights[0] - weights[1] * x) / weights[2] ax.plot(x, y) plt.title('BestFit') #绘制title plt.xlabel('X1'); plt.ylabel('X2') #绘制label plt.show() if __name__ == '__main__': dataMat, labelMat = loadDataSet() weights = gradAscent(dataMat, labelMat) plotBestFit(weights) |
运行结果如下:
这个分类结果相当不错,从上图可以看出,只分错了几个点而已。但是,尽管例子简单切数据集很小,但是这个方法却需要大量的计算(300次乘法)。因此下篇文章将对改算法稍作改进,从而减少计算量,使其可以应用于大数据集上。
四、总结
Logistic回归的一般过程:
- 收集数据:采用任意方法收集数据。
- 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
- 分析数据:采用任意方法对数据进行分析。
- 训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
- 测试算法:一旦训练步骤完成,分类将会很快。
- 使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数,就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。
其他:
- Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可以由最优化算法完成。
- 本文讲述了Logistic回归原理以及数学推导过程。
- 下篇文章将讲解Logistic回归的改进以及Sklearn实战内容。
- 如有问题,请留言。如有错误,还望指正,谢谢!
PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、赞!
本文出现的所有代码和数据集,均可在我的github上下载,欢迎Follow、Star:https://github.com/Jack-Cherish/Machine-Learning
参考文献:
- 斯坦福大学的吴恩达《机器学习》:https://www.coursera.org/learn/machine-learning
- 《机器学习实战》第五章内容

2018年10月17日 上午10:58 21楼
博主大大, 我有个和楼上一样的疑问,sigmoid函数不是(theta的转置*X)嘛,为什么在这块是sigmoid(dataMatrix * weights)
2018年10月17日 上午11:50 1层
@小象 你把dataMatrix打印看下是什么样子的,还有weights。那个是公式,theta默认是列向量,得转成行向量进行相相乘。这个直接就是行向量,每一行是一组数据。
2018年10月23日 下午4:14 22楼
error = labelMat – h
报错unfunc‘substract’did not contain a loop with signature macthing types dtype(‘S32’)
请大神指点
2018年10月23日 下午6:20 1层
@Ian Yang python几啊?
2018年10月24日 上午8:05 2层
@Jack Cui 2.7和3.6都是过了,都报同样的错误,现在搞定了,dtype类型没有统一
2018年10月24日 上午8:16 3层
@Ian Yang 你这是数据类型不相同导致的,可以用type打印看下数据类型,然后进行转换,变成统一类型就好了。可以参考:
https://blog.csdn.net/u012005313/article/details/51567804
2018年11月9日 下午2:55 23楼
楼主,你好,Logistic回归教程有两个地方我认为有问题:
1、在“三、Python3实战——2、训练算法”部分,梯度上升公式没有带求和,与“二、Logistic回归与梯度上升算法”中的最后一个公式不对应;
2、看了楼主推荐的吴恩达老师机器学习视频教程,Logistic回归课程用的是梯度下降法,与楼主用梯度上升法不同的原因是Cost函数取了负,我感觉吴老师用负号是有依据的,可以参考下吴老师视频的6-4节中的两幅图。
另外,感谢楼主的分享,特别是将到自己的经历那篇,祝前程似锦!
2018年11月9日 下午3:15 1层
@飞翔吧少年 1、这个没有求和公式,因为这是向量化的结果,以矩阵的形式计算,无需求和公式。
2、机器学习实战的书里也是用的梯度上升算法,没有取负,它们的原理都是一样的,这个没有问题的。
2018年11月12日 下午3:30 2层
@Jack Cui 博主,好
1、求和问题,我指的是θj := 那个公式,并不是矩阵公式;
2018年11月12日 下午4:14 3层
@飞翔吧少年 哦哦,感谢,已经更正。
2018年11月29日 下午3:39 24楼
博主,想请教下numpy模块的相关使用方法你是看的哪本书啊?
2018年11月29日 下午3:44 1层
@MrCCC 我看的菜鸟教程。
2019年5月3日 下午4:44 25楼
博主您好!在实际应用中Logistic这个算法sigmoid函数的输入函数怎么来确定,用直线、曲线函数(曲线是2次、还是高次函数)、有明显的辨别特征吗?
2019年5月5日 上午9:32 1层
@HUSTHY 这个没有研究过。
2019年7月15日 下午4:04 26楼
偏导的分母应该少写了一个微分号吧?
2019年7月15日 下午5:00 1层
@安生晓 写得很好,容易看懂
2019年9月6日 上午9:07 27楼
博主大大:
“假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积”,这句话,样本之间相互独立 ,为什么是所有样本的概率相乘, 相互独立的概率相乘,那不就成了所有样本同时发生的概率吗?
2019年9月6日 上午9:49 1层
@Piero 这里是最大似然估计,我省略了一步,你可以看下。
2019年9月6日 上午9:59 2层
@Jack Cui 没太懂你说的,省略了哪步?
“假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积”你说这句话推断出下面的连加公式不大懂
2019年10月24日 上午10:38 3层
@Piero 那边是单个样本的边际概率,我们要求的是所以的样本(m),所以这里需要对单个的边际分布概率就行累乘,求取所以样本的联合分布概率。 求取联合分布概率之后,我们是需要对损失函数求极值的(求导)。累乘不容易计算,我们这里就引入对数拟然,举个栗子,loy(AB) = log(A)+log(B).就这样就可以吧累乘变成累加,在计算就非常容易了
2019年10月24日 上午10:44 4层
@~淡忘※ 其实就是所有样本同时发生的概率,对吧?
2019年10月24日 上午10:46 3层
@Piero 是的呀
2019年10月24日 上午10:59 4层
@~淡忘※ 明白了,非常感谢,谢谢大神
2019年10月24日 下午1:34 3层
@Piero 抱歉,漏评了。
楼上正解。
2019年10月24日 下午2:09 4层
@Jack Cui 嗯 现在明白了, 谢谢两位大神,非常感谢
2019年10月24日 上午10:08 28楼
这边损失函数是不是求错呢,是不是少了乘与1/m,你上面不乘的话,那我们样本数m越大,我的损失函数就越大了,这里好像没有剔除样本对损失函数的影响
2019年10月24日 上午10:31 29楼
在损失函数那边,加一个惩罚函数会更好一点呢,没有惩罚函数的话,我们好像很容易过拟合。。。。
2019年10月24日 下午1:31 1层
@~淡忘※ 是的,应该乘以1/m。时间有点长,忘记是当时书上没有,还是当时忘写了。
还有,惩罚项的话,应该是在整体的cost function之后加,比如加个L1或L2。
2019年11月10日 上午10:07 30楼
博主,有点小建议,就是这块:合并出来的Cost,我们称之为代价函数(Cost Function)。
代价函数的定义应该是越小越好。应该在前面加上一个负号。也就是下面所说的梯度下降方法计算的。所以这里
我觉得叫代价函数欠妥。还望改正。
2019年11月10日 下午3:44 1层
@summer 已更正,感谢。