本文 GitHub https://github.com/Jack-Cherish/PythonPark 已收录,有技术干货文章,整理的学习资料,一线大厂面试经验分享等,欢迎 Star 和 完善。
一、前言
大家好,我是 Jack。
本文是图解 AI 算法系列教程的第二篇,今天的主角是 Transformer。
Transformer 可以做很多有趣而又有意义的事情。
比如我写过的《用自己训练的AI玩王者荣耀是什么体验?》。
再比如 OpenAI 的 DALL·E,可以魔法一般地按照自然语言文字描述直接生成对应图片!
输入文本:鳄梨形状的扶手椅。
AI 生成的图像:
两者都是多模态的应用,这也是各大巨头的跟进方向,可谓大势所趋。
Transformer
最初主要应用于一些自然语言处理场景,比如翻译、文本分类、写小说、写歌等。
随着技术的发展,Transformer
开始征战视觉领域,分类、检测等任务均不在话下,逐渐走上了多模态的道路。
Transformer
近两年非常火爆,内容也很多,要想讲清楚,还涉及一些基于该结构的预训练模型,例如著名的 BERT
,GPT
,以及刚出的 DALL·E
等。
它们都是基于 Transformer
的上层应用,因为 Transformer
很难训练,巨头们就肩负起了造福大众的使命,开源了各种好用的预训练模型。
我们都是站在巨人肩膀上学习,用开源的预训练模型在一些特定的应用场景进行迁移学习。
篇幅有限,本文先讲解 Transformer
的基础原理,希望每个人都可以看懂。
后面我会继续写 BERT
、GPT
等内容,更新可能慢一些,但是跟着学,绝对都能有所收获。
还是那句话:如果你喜欢这个 AI 算法系列教程,一定要让我知道,转发在看支持,更文更有动力!
二、Transformer
Transformer
是 Google
在 2017
年提出的用于机器翻译的模型。
Transformer
的内部,在本质上是一个 Encoder-Decoder
的结构,即 编码器-解码器
。
Transformer
中抛弃了传统的 CNN
和 RNN
,整个网络结构完全由 Attention
机制组成,并且采用了 6
层 Encoder-Decoder
结构。
显然,Transformer
主要分为两大部分,分别是编码器和解码器。
整个 Transformer
是由 6
个这样的结构组成,为了方便理解,我们只看其中一个Encoder-Decoder
结构。
以一个简单的例子进行说明:
Why do we work?
,我们为什么工作?
左侧红框是编码器,右侧红框是解码器,
编码器负责把自然语言序列映射成为隐藏层(上图第2步),即含有自然语言序列的数学表达。
解码器把隐藏层再映射为自然语言序列,从而使我们可以解决各种问题,如情感分析、机器翻译、摘要生成、语义关系抽取等。
简单说下,上图每一步都做了什么:
输入自然语言序列到编码器: Why do we work?(为什么要工作); 编码器输出的隐藏层,再输入到解码器; 输入 <𝑠𝑡𝑎𝑟𝑡> (起始)符号到解码器; 解码器得到第一个字"为"; 将得到的第一个字"为"落下来再输入到解码器; 解码器得到第二个字"什"; 将得到的第二字再落下来,直到解码器输出 <𝑒𝑛𝑑> (终止符),即序列生成完成。
解码器和编码器的结构类似,本文以编码器部分进行讲解。即把自然语言序列映射为隐藏层的数学表达的过程,因为理解了编码器中的结构,理解解码器就非常简单了。
为了方便学习,我将编码器分为 4
个部分,依次讲解。
1、位置嵌入(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔)
我们输入数据 X
维度为[batch size, sequence length]
的数据,比如我们为什么工作
。
batch size
就是 batch
的大小,这里只有一句话,所以 batch size
为 1
,sequence length
是句子的长度,一共 7
个字,所以输入的数据维度是 [1, 7]
。
我们不能直接将这句话输入到编码器中,因为 Tranformer
不认识,我们需要先进行字嵌入,即得到图中的 \(X_{\text {embedding }}\)。
简单点说,就是文字->字向量的转换,这种转换是将文字转换为计算机认识的数学表示,用到的方法就是 Word2Vec
,Word2Vec
的具体细节,对于初学者暂且不用了解,这个是可以直接使用的。
得到的 \(X_{\text {embedding }}\) 的维度是 [batch size, sequence length, embedding dimension]
,embedding dimension
的大小由 Word2Vec
算法决定,Tranformer
采用 512
长度的字向量。所以 \(X_{\text {embedding }}\) 的维度是 [1, 7, 512]
。
至此,输入的我们为什么工作
,可以用一个矩阵来简化表示。
我们知道,文字的先后顺序,很重要。
比如吃饭没
、没吃饭
、没饭吃
、饭吃没
、饭没吃
,同样三个字,顺序颠倒,所表达的含义就不同了。
文字的位置信息很重要,Tranformer
没有类似 RNN
的循环结构,没有捕捉顺序序列的能力。
为了保留这种位置信息交给 Tranformer
学习,我们需要用到位置嵌入。
加入位置信息的方式非常多,最简单的可以是直接将绝对坐标 0,1,2
编码。
Tranformer
采用的是 sin-cos
规则,使用了 sin
和 cos
函数的线性变换来提供给模型位置信息:
$$\begin{aligned} P E_{(p o s, 2 i)} &=\sin \left(p o s / 10000^{2 i / d_{\text {model }}}\right) \\ P E_{(\text {pos }, 2 i+1)} &=\cos \left(\text { pos } / 10000^{2 i / d_{\text {model }}}\right) \end{aligned}$$
上式中 pos
指的是句中字的位置,取值范围是 [0, 𝑚𝑎𝑥 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ)
,i
指的是字嵌入的维度, 取值范围是 [0, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)
。 就是 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
的大小。
上面有 sin
和 cos
一组公式,也就是对应着 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
维度的一组奇数和偶数的序号的维度,从而产生不同的周期性变化。
可以用代码,简单看下效果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # 导入依赖库 import numpy as np import matplotlib.pyplot as plt import seaborn as sns import math def get_positional_encoding(max_seq_len, embed_dim): # 初始化一个positional encoding # embed_dim: 字嵌入的维度 # max_seq_len: 最大的序列长度 positional_encoding = np.array([ [pos / np.power(10000, 2 * i / embed_dim) for i in range(embed_dim)] if pos != 0 else np.zeros(embed_dim) for pos in range(max_seq_len)]) positional_encoding[1:, 0::2] = np.sin(positional_encoding[1:, 0::2]) # dim 2i 偶数 positional_encoding[1:, 1::2] = np.cos(positional_encoding[1:, 1::2]) # dim 2i+1 奇数 # 归一化, 用位置嵌入的每一行除以它的模长 # denominator = np.sqrt(np.sum(position_enc**2, axis=1, keepdims=True)) # position_enc = position_enc / (denominator + 1e-8) return positional_encoding positional_encoding = get_positional_encoding(max_seq_len=100, embed_dim=16) plt.figure(figsize=(10,10)) sns.heatmap(positional_encoding) plt.title("Sinusoidal Function") plt.xlabel("hidden dimension") plt.ylabel("sequence length") |
可以看到,位置嵌入在 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
(也是hidden dimension
)维度上随着维度序号增大,周期变化会越来越慢,而产生一种包含位置信息的纹理。
就这样,产生独一的纹理位置信息,模型从而学到位置之间的依赖关系和自然语言的时序特性。
最后,将 \(X_{\text {embedding }}\) 和 位置嵌入
相加,送给下一层。
2、自注意力层(𝑠𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚)
直接看下图笔记,讲解的非常详细。
多头的意义在于,\(Q K^{T}\) 得到的矩阵就叫注意力矩阵,它可以表示每个字与其他字的相似程度。因为,向量的点积值越大,说明两个向量越接近。
我们的目的是,让每个字都含有当前这个句子中的所有字的信息,用注意力层,我们做到了。
需要注意的是,在上面 𝑠𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
的计算过程中,我们通常使用 𝑚𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ
,也就是一次计算多句话,上文举例只用了一个句子。
每个句子的长度是不一样的,需要按照最长的句子的长度统一处理。对于短的句子,进行 Padding
操作,一般我们用 0
来进行填充。
3、残差链接和层归一化
加入了残差设计和层归一化操作,目的是为了防止梯度消失,加快收敛。
1) 残差设计
我们在上一步得到了经过注意力矩阵加权之后的 𝑉
, 也就是 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)
,我们对它进行一下转置,使其和 𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
的维度一致, 也就是 [𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛]
,然后把他们加起来做残差连接,直接进行元素相加,因为他们的维度一致:
$$X_{embedding} + Attention(Q, \ K, \ V)$$
在之后的运算里,每经过一个模块的运算,都要把运算之前的值和运算之后的值相加,从而得到残差连接,训练的时候可以使梯度直接走捷径反传到最初始层:
$$X + SubLayer(X) $$
2) 层归一化
作用是把神经网络中隐藏层归一为标准正态分布,也就是 𝑖.𝑖.𝑑
独立同分布, 以起到加快训练速度, 加速收敛的作用。
$$\mu_{i}=\frac{1}{m} \sum^{m}_{i=1}x_{ij}$$
上式中以矩阵的行 (𝑟𝑜𝑤) 为单位求均值:
$$\sigma^{2}_{j}=\frac{1}{m} \sum^{m}_{i=1}
(x_{ij}-\mu_{j})^{2}$$
上式中以矩阵的行 (𝑟𝑜𝑤) 为单位求方差:
$$LayerNorm(x)=\alpha \odot \frac{x_{ij}-\mu_{i}}
{\sqrt{\sigma^{2}_{i}+\epsilon}} + \beta $$
然后用每一行的每一个元素减去这行的均值,再除以这行的标准差,从而得到归一化后的数值,\(\epsilon\)是为了防止除\(0\);
之后引入两个可训练参数\(\alpha, \ \beta\)来弥补归一化的过程中损失掉的信息,注意\(\odot\)表示元素相乘而不是点积,我们一般初始化[/latex]\alpha[/latex]为全[/latex]1[/latex],而\(\beta\)为全\(0\)。
代码层面非常简单,单头 attention
操作如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): # self.temperature是论文中的d_k ** 0.5,防止梯度过大 # QxK/sqrt(dk) attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: # 屏蔽不想要的输出 attn = attn.masked_fill(mask == 0, -1e9) # softmax+dropout attn = self.dropout(F.softmax(attn, dim=-1)) # 概率分布xV output = torch.matmul(attn, v) return output, attn |
Multi-Head Attention
实现在 ScaledDotProductAttention
基础上构建:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' # n_head头的个数,默认是8 # d_model编码向量长度,例如本文说的512 # d_k, d_v的值一般会设置为 n_head * d_k=d_model, # 此时concat后正好和原始输入一样,当然不相同也可以,因为后面有fc层 # 相当于将可学习矩阵分成独立的n_head份 def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() # 假设n_head=8,d_k=64 self.n_head = n_head self.d_k = d_k self.d_v = d_v # d_model输入向量,n_head * d_k输出向量 # 可学习W^Q,W^K,W^V矩阵参数初始化 self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) # 最后的输出维度变换操作 self.fc = nn.Linear(n_head * d_v, d_model, bias=False) # 单头自注意力 self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) # 层归一化 self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, q, k, v, mask=None): # 假设qkv输入是(b,100,512),100是训练每个样本最大单词个数 # 一般qkv相等,即自注意力 residual = q # 将输入x和可学习矩阵相乘,得到(b,100,512)输出 # 其中512的含义其实是8x64,8个head,每个head的可学习矩阵为64维度 # q的输出是(b,100,8,64),kv也是一样 q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) # 变成(b,8,100,64),方便后面计算,也就是8个头单独计算 q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) # For head axis broadcasting. # 输出q是(b,8,100,64),维持不变,内部计算流程是: # q*k转置,除以d_k ** 0.5,输出维度是b,8,100,100即单词和单词直接的相似性 # 对最后一个维度进行softmax操作得到b,8,100,100 # 最后乘上V,得到b,8,100,64输出 q, attn = self.attention(q, k, v, mask=mask) # b,100,8,64-->b,100,512 q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) # 残差计算 q += residual # 层归一化,在512维度计算均值和方差,进行层归一化 q = self.layer_norm(q) return q, attn |
4、前馈网络
这个层就没啥说的了,非常简单,直接看代码吧:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | class PositionwiseFeedForward(nn.Module): ''' A two-feed-forward-layer module ''' def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() # 两个fc层,对最后的512维度进行变换 self.w_1 = nn.Linear(d_in, d_hid) # position-wise self.w_2 = nn.Linear(d_hid, d_in) # position-wise self.layer_norm = nn.LayerNorm(d_in, eps=1e-6) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x |
最后,回顾下 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑒𝑛𝑐𝑜𝑑𝑒𝑟
的整体结构。
经过上文的梳理,我们已经基本了解了 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
编码器的主要构成部分,我们下面用公式把一个 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑏𝑙𝑜𝑐𝑘
的计算过程整理一下:
1) 字向量与位置编码
$$X = EmbeddingLookup(X) + PositionalEncoding$$
$$X \in \mathbb{R}^{batch \ size \ * \ seq. \ len. \ * \ embed. \ dim.} $$
2) 自注意力机制
$$Q = Linear(X) = XW_{Q}$$
$$K = Linear(X) = XW_{K}$$
$$V = Linear(X) = XW_{V}$$
$$X_{attention} = SelfAttention(Q, \ K, \ V)$$
3) 残差连接与层归一化
$$X_{attention} = X + X_{attention}$$
$$X_{attention} = LayerNorm(X_{attention})$$
4) 前向网络
其实就是两层线性映射并用激活函数激活,比如说\(ReLU\):
$$X_{hidden} = Activate(Linear(Linear(X_{attention})))$$
5) 重复3)
$$X_{hidden} = X_{attention} + X_{hidden}$$
$$X_{hidden} = LayerNorm(X_{hidden})$$
$$X_{hidden} \in \mathbb{R}^{batch \ size \ * \ seq. \ len. \ * \ embed. \ dim.} $$
三、絮叨
至此,我们已经讲完了 Transformer
编码器的全部内容,知道了如何获得自然语言的位置信息,注意力机制的工作原理等。
本文以原理讲解为主,后续我会继续更新实战内容,教大家如何训练我们自己的有趣又好玩的模型。
本文硬核,肝了很久,如果喜欢,还望转发、再看多多支持。
我是 Jack ,我们下期见。
文章持续更新,可以微信公众号搜索【JackCui-AI】第一时间阅读,本文 GitHub https://github.com/Jack-Cherish/PythonPark 已经收录,有大厂面试完整考点,欢迎Star。
2021年2月17日 下午9:48 沙发
解码器没有讲解吗
2021年2月23日 下午7:20 板凳
太深奥,看不懂!
2021年5月8日 上午10:26 地板
哈哈哈,我正好看完,jack大佬这篇就是论文解析的感觉,没理解的地方也讲到了,好强
2021年6月7日 上午11:26 4楼
请教一下,我看这篇blog 【https://jalammar.github.io/illustrated-transformer/】说 multi-head attention是 N 倍的Q, K, V,但你这里说是将Q, K, V分成N份,不知道哪个是对的,还是说你在W_q, W_k, W_v时先将这些矩阵设置为 N 倍?
(刚学几天bert,不要见怪)
2021年11月9日 下午2:05 5楼
contiguous()操作一般什么时候用呢?我理解的是更换张量存储的位置吗?在Multi-Head Attention代码的第51行的位置.